A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

نویسندگان

  • Maren F Hansen
  • Ulrike Neckmann
  • Liss A S Lavik
  • Trine Vold
  • Bodil Gilde
  • Ragnhild K Toft
  • Wenche Sjursen
چکیده

The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary Nonpolyposis Colorectal Cancer (HNPCC)/Lynch Syndrome: Surveillance and Diagnostic strategies

Introduction: Hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) is an autosomal dominant genetic disease. The disease is caused by a mutation in one of four genes of the DNA mismatch repair system and increases the risk for various cancers, especially the uterine and colon cancers. The prevalence of this disease in the general population is about 1 in 500 and it causes about 2-3...

متن کامل

Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome.

Founder mutations in specific populations are common in several Mendelian disorders. They are shared by apparently unrelated families that inherited them from a common ancestor that existed hundreds to thousands of years ago. They have been proven to impact in molecular diagnostics strategies in specific populations, where they can be assessed as the first screening step and, if positive, avoid...

متن کامل

Genetic Testing in Hereditary Breast and Ovarian Cancer Using Massive Parallel Sequencing

High throughput methods such as next generation sequencing are increasingly used in molecular diagnosis. The aim of this study was to develop a workflow for the detection of BRCA1 and BRCA2 mutations using massive parallel sequencing in a 454 GS Junior bench top sequencer. Our approach was first validated in a panel of 23 patients containing 62 unique variants that had been previously Sanger se...

متن کامل

Identification of a Comprehensive Spectrum of Genetic Factors for Hereditary Breast Cancer in a Chinese Population by Next-Generation Sequencing

The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we ...

متن کامل

Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan

Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014